Development of functional topography in the corticorubral projection: An in vivo assessment using synaptic potentials recorded from fetal and newborn cats.
نویسندگان
چکیده
In mammals, topographic maps emerge from initially diffuse projections during development. To gain insight into the mechanisms governing the transition from a diffuse projection to a topographic map, we studied topographic specificity of functional connections during development, using the cat corticorubral system as a model. In the adult cat, rubrospinal neurons in the dorsomedial part of the red nucleus (RN) receive input primarily from the forelimb area of the sensorimotor cortex, whereas those in the ventrolateral part receive input primarily from the hindlimb area. During development, axons from the sensorimotor cortex arrive in the RN at embryonic day 50 (E50) (Song et al., 1995a) and are diffusely distributed in the RN until postnatal day 13 (P13) (Higashi et al., 1990). Here, we studied the development of the pattern of functional cortical inputs to individual rubrospinal neurons, using synaptic potentials recorded in vivo. The functional topography in each rubrospinal neuron in developing cats was examined and classified either as adult-like or nonadult-like by comparison with the adult pattern. In preterm kittens from E61 to E65, only about half of the recorded neurons (41%; n = 22) showed adult-like functional topography. This percentage, however, increased to 82% (n = 56) in P1-P8 kittens and to 93% (n = 42) in P13-P28 kittens. These results, in conjunction with the above mentioned anatomical observations, suggest that corticorubral axons make functional synapses nonselectively with rubrospinal neurons before birth. Furthermore, the functional topographic map developed earlier than the anatomical map (P13), suggesting that there is a developmental step of selective promotion of synapse formation and/or selective enhancement of synaptic efficacy in topographically appropriate regions in the RN, before the emergence of the mature anatomical map.
منابع مشابه
Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat.
The formation of synaptic contacts is a crucial event during neural development and is thought to be achieved by complex interactions between incoming axons and the neurons in the target. We have focused on spine-like dendritic protrusions (SLDPs), which are transient pleomorphic protrusive structures seen in developing brains. Although the functional significance of SLDPs remains unknown, accu...
متن کاملPentylenetetrazol-kindling induced synaptic plasticity in the CA1 region of rat hippocampus
The impact of pentylenetetrazol-induced kindling on the effectiveness of theta pattern primed-bursts (PBs) for the induction of long-term potentiation (LTP) of field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were investigated in hippocampal CA1 of pentylenetetrazol-kindled rats in vivo. The results showed that shortly after kindling, control animals had normal LTP of...
متن کاملPentylenetetrazol-kindling induced synaptic plasticity in the CA1 region of rat hippocampus
The impact of pentylenetetrazol-induced kindling on the effectiveness of theta pattern primed-bursts (PBs) for the induction of long-term potentiation (LTP) of field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were investigated in hippocampal CA1 of pentylenetetrazol-kindled rats in vivo. The results showed that shortly after kindling, control animals had normal LTP of...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 22 شماره
صفحات -
تاریخ انتشار 1998